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Abstract

Data recovery and reconstruction methods for unsteady flow fields with spatio-
temporal missing data are studied based on proper orthogonal decomposition (POD)
and on Kriging interpolation. It is found that for sufficient temporal resolution,
POD-based methods outperform Kriging interpolation. However, for insufficient
temporal resolution, large spatial gappiness or for flow fields with black zones, Krig-
ing interpolation is more effective. The comparison is performed based on randomly
generated laminar and turbulent flow fields obtained from simulations of uniform
flow past a circular cylinder.
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1 Introduction

Data assimilation is routinely used in atmospheric and ocean modeling, how-
ever, this is not the case with more classical fluid mechanics problems in
laboratory or open field applications. The recent rapid developments in quan-
titative imaging techniques, e.g., particle image velocimetry (PIV) and mag-
netic resonance imaging (MRI), and the simultaneous advances in large-scale
simulation offer the possibility for integrating seamlessly flow simulations and
experiments. A key element in this integration is the reconstruction of flow
fields from a finite number of PIV or MRI images and the evaluation of er-
ror in such reconstruction. Even for relatively simple laboratory experiments
such as the classical flow past a cylinder, information may be missing due to
“shadowing” (i.e., obstructed view) and proximity to the cylinder walls or the
frequency of the measurements may be below a certain threshold, e.g. in MRI
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measurements. Therefore, we have to work with gappy data where the spatio-
temporal regions of missing data are known in advance or where missing data
occurs at random.

The gappy data problem is not new as researchers have been working on it for
many decades and many different statistical approaches are used in practice
[1,2]. Local Kriging is an effective statistical method which has been used
with success in geology and other fields to interpolate randomly scattered
data. Unlike other estimation procedures, Kriging provides a measure of the
error and associated confidence in the estimates [3]. It is also appropriate for
the so-called “black zones”, i.e. regions of the domain that may miss data
at all times. A non-statistical method for spatio-temporal gappiness, based
on proper orthogonal decomposition (POD), was first proposed in [4]; it was
extended and tested in flow problems in [5,6]. Independently, another version
of the method was presented in [7] for oceanographic data using again the
method of empirical orthogonal functions (EOF) – a method conceptually
identical to POD. In particular, the versions presented in [6,7] make this non-
statistical approach more robust compared to its original formulation in [4] as
the extended method does not depend on the initial guess of the flow field in
the gappy regions.

In the current work we present a comparative study between the aforemen-
tioned two POD-based reconstruction procedures against the Kriging recon-
struction procedure. Of particular interest is the maximum possible resolution
that can be obtained given a certain gappiness level. This, in general, is a com-
plex question and the answer depends critically on the type of spatio-temporal
gappiness in the flow field, the smoothness of the data, and the Reynolds num-
ber. To this end, we have selected the flow past a cylinder as a test problem due
to the previous experience with this flow that shows that a low-dimensional
representation indeed exists, see [6,8–11], and thus redundancy in the available
gappy data can be exploited for an accurate reconstruction. Here we consider
both two- and three-dimensional gappy flow fields in the laminar and turbulent
regimes and vary appropriately the available number of flow snapshots.

The paper is organized as follows. In the next section we present an overview
of two versions of the POD based reconstruction that we will employ as well
as of the Kriging interpolation. We then describe in section 3 the procedure
we follow in producing gappy data sets based on direct numerical simulations
(DNS). In section 4 we present the results, separately for two-dimensional lam-
inar flows and for three-dimensional laminar and turbulent flows. We conclude
in section 5 with a brief summary.
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2 Methodology

We present first two versions of the POD-based reconstruction approach and
subsequently a brief overview of the Kriging interpolation.

2.1 POD-based Reconstruction

The problem of reconstructing a gappy field using POD orthogonal modes was
first considered by Everson & Sirovich in [4] for an image reconstruction static
problem. The gappy field can be written in the following way:

ug(x, t) = (u(x, t)m1(x, t), v(x, t)m2(x, t), w(x, t)m3(x, t)) , (1)

where mj(x, t) tracks the spatio-temporal missing data. It is defined by

mj(x, t) =




1

0

if the jth component of the field is known in (x, t)

if the jth component of the field is missing in (x, t).

(2)

The procedure proposed by Everson & Sirovich completes the missing spatio-
temporal dynamics starting from a certain initial guess for the unknowns and
proceeds iteratively. At the heart of the method is the minimization of a
functional defined in the spatio-temporal domain where the field is known.
Let us denote by ũ (x, t) a completed field based on some initial guess; the
standard Everson-Sirovich method employs the time average value at that
location as initial guess. Subsequently, we perform POD of ũ (x, t) to obtain
the guessed spatial and temporal modes. This decomposition has the form

ũ (x, t) =
N∑

k=1

Φ̃k (x) ζ̃k (t) , (3)

where ζ̃k(t) is the kth guessed temporal mode and Φ̃k(x) is the kth guessed
spatial mode. The proper functional for minimization is

Fg

[
ξ̃k

]
=

∥∥∥∥∥ũ (x, t)−
M∑

k=1

Φ̃k (x) ξ̃k (t)

∥∥∥∥∥

2

Gappy

(4)

=

(
ũ (x, t)−

M∑

k=1

Φ̃k (x) ξ̃k (t) , ũ (x, t)−
M∑

k=1

Φ̃k (x) ξ̃k (t)

)

Gappy

,

where the “Gappy” norm is defined on the support of ũ(x, t), i.e. the spatio-
temporal domain on which the values of ũ(x, t) are known for sure. Also, M
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is the number of modes that we use in the reconstruction process, which is
different than the number of available snapshots N (M ≤ N). Minimization
of this functional (4) leads to the linear system of algebraic equations

M∑

j=1

(
Φ̃i (x) , Φ̃j (x)

)
Ωg(t)

ξ̃j (t) =
(
ũ (x, t) , Φ̃i (x)

)
Ωg(t)

i = 1, ....,M. (5)

The unknowns are the new (non-normalized) temporal modes
{
ξ̃k(t)

}
; also,

Ωg(t) is the gappy spatial domain at time t. Note that the M ×M matrix

[
K̃
]
ij
=
(
Φ̃i (x) , Φ̃j (x)

)
Ωg(t)

(6)

has time-dependent coefficients.

We now summarize the above algorithm, which is the first version of the POD
approach that we present:

Algorithm POD-1

(1) Use time-average values as initial guesses at the locations mj(x, t) = 0 to
obtain N snapshots of an initial complete field ũ(x, t).

(2) Perform POD of ũ(x, t) to obtain N guessed spatial modes
{
Φ̃i (x)

}
.

(3) Select the number of modes M to be employed in the reconstruction.

(4) Construct the matrix
[
K̃
]
ij
=
(
Φ̃i (x) , Φ̃j (x)

)
Ωg(t)

and the vector [f̃ ]i =
(
ũ (x, t) , Φ̃i (x)

)
Ωg(t)

.

(5) Solve the M ×M linear system: K̃ξ̃ = f̃ for the unknowns
{
ξ̃k(t)

}
.

(6) Construct a new vector field as follows:

w̃ (x, t) =
M∑

k=1

Φ̃k (x) ξ̃k (t) (7)

and overwrite the previous guess, i.e., set

ũ (x, t) = w̃ (x, t) only if mj(x, t) = 0.

(7) Upon convergence stop, otherwise go to (2).

A computationally expensive element in the above algorithm is the solution
of the least-squares system in each iteration in steps 4 and 5. An alternative
approach is to bypass these steps and approximate ξ̃k ≈ ζ̃k. For clarity, we
present the entire modified procedure below:
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Algorithm POD-2

(1) Use time-average values as initial guesses at the locations mj(x, t) = 0 to
obtain N snapshots of an initial complete field ũ(x, t).

(2) Perform POD of ũ(x, t) to obtain N guessed spatial modes
{
Φ̃i (x)

}
and

the corresponding temporal modes ζ̃k(t).
(3) Select the number of modes M to be employed in the reconstruction.
(4) Construct a new vector field as follows:

w̃ (x, t) =
M∑

k=1

Φ̃k (x) ζ̃k (t) (8)

and overwrite the previous guess, i.e., set

ũ (x, t) = w̃ (x, t) only if mj(x, t) = 0.

(5) Upon convergence stop, otherwise go to (2).

This approach has been used in [7] for oceanographic data using the singular
value decomposition formulation.

POD-1 breaks down when the matrix K̃ is singular. This includes, for ex-
ample, the case in which a snapshot is missing (i.e., Ωg (t

∗) = 0). Also, both
algorithms (POD-1 and POD-2) break down if there are any spatial subregions
for which the data is missing at all the times. In general, the optimum number
of modes Mo in the reconstruction depends on the initial guess. Specifically,
by optimum number of modes we mean the number Mo for which the error
is the smallest among all possible converged reconstructions. A more robust
version was presented in [6] that does not depend on the initial guess and,
in addition, enhances accuracy significantly. The main steps of this iterative
procedure are:

Iterative Procedure

(1) Perform POD-1 but employ only M = 2 modes in the reconstruction.
(2) Use the converged result from the previous step as a new initial guess

and apply POD-1 but now employ M = 3 modes in the reconstruction.
(3) Proceed similarly for the nth iteration until the obtained eigenspectrum

does not change anymore.

Although more costly, results presented in [6] suggest that the iterative POD-1
procedure leads to the maximum possible resolution of the true eigenspectrum
and thus of possible accuracy in reconstructing the flow field. More impor-
tantly, the final solution will only depend on the degree of gappiness and not
on the initial guesses in the gappy subregions. A similar iterative procedure
for POD-2 can be used by starting from M = 1.
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We have found that the same iterative procedure is effective when we apply
POD-2, see [12]. In the present paper, we will employ the iterative extensions
of algorithms POD-1 and POD-2.

2.2 Kriging Interpolation

We adopt the Kriging interpolation method based on the correlogram rather
than the usual variogram, (see [13] for more information), implemented in the
Matlab toolbox DACE, [14]. A brief overview is as follows:

Let S be the sampling grid containing known m points, i.e., S = [s1...sm] with
si ∈ Rn. A known value of a function at those locations is denoted as yi ∈ Rp,
where we assume that we have p functions at the point, i, e.g., p = 3 for
a three-dimensional velocity vector field. Let Y be the matrix containing all
those responses, i.e., Y = [y1...ym], yi ∈ Rp.

Let us assume for simplicity that p = 1. Then, for the set S of our sampling
grid, we define the m× l interpolation matrix F ∈ Rm×l as

Fij = fj(si),

where fj : Rn → R are polynomial functions. We also define the correlation
matrix R ∈ Rm×m by Rij = R(θ, si, sj) where θ is the correlation parameter
that defines implicitly the correlation length. Then, the Kriging interpolation
at an unknown point x is

ŷ = f(x)µ∗ + r(x)γ∗, (9)

where f(x) = [f1(x), f2(x), ..., f (n+1)(n+2)
2

(x)] are the functions in the regression

model, and

µ
∗ = (FTR−1F)−1FTR−1Y,

r(x) = [R(θ, s1, x)...R(θ, sm, x)]T ,

with

γ
∗ = R−1(Y − Fµ∗).

From this last formula we see that for each unknown point x, we just need
to compute the interpolation vector f(x) and the correlation vector r(x). We
first specify the correlation matrix R(θ, si, sj) and provide a range for θ within
which an optimization procedure is performed based on the variance esti-
mate. This will give the optimum value θ∗ and based on that value then
R(θ∗, si, sj),µ

∗ and γ∗ will also be known.

For multiple functions (p > 1), equation (9) is valid for each column of Y, i.e.
equation (9) holds with µ∗ ∈ Rl×p and γ∗ ∈ Rm×p.
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The regression model used in all of our studies is based on second-order poly-
nomials. Specifically, let xj be the jth component of x ∈ Rn, then:

f1(x) = 1

f2(x) = x1, ..., fn+1(x) = xn

fn+2 = x21, ..., f2n+1 = x1xn

f2n+2 = x22, ..., f3n = x2xn

. . . . . . fl(x) = x2n

where l = (n+1)(n+2)
2

.

Also, for the correlation kernel R, we employ a Gaussian correlation model

since the flow field is continuously differentiable. More precisely, R has the
form :

R(θ, w, x) =
n∏

j=1

Rj(θ, wj − xj)

where
Rj(θ, wj − xj) = exp(−θj(wj − xj)

2).

In the last sub-section of section 4 we will also use the exponential correlation
model for comparison, defined by

Rj(θ, wj − xj) = exp(−θj|wj − xj|).

For more information regarding the computational aspects of the Kriging pro-
cedure, see [15].

In order to apply the Kriging procedure to our gappy data we need to distin-
guish two cases. First, we consider the case that we have no black zones at all.
In this case, we apply the Kriging procedure element-by-element, where ele-
ment here refers to the spectral element of the computational mesh. Second,
we consider gappy data with black zones. In this case, we embed the black
zone in a larger region, roughly twice the size of the black zone, so that is
surrounded with data points of known values. We then apply Kriging on the
larger region.

3 Data Gathering

We first consider two-dimensional flow past a circular cylinder at Reynolds
number Re = 100 and Re = 500. The computational domain is shown in fig-
ure 1. Uniform flow is imposed at the inflow boundary Γ1 and also on Γ3 and
Γ4 while on Γ2 the zero Neumann condition on velocity is imposed and the
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pressure is set to zero. On the cylinder surface Γ5 the no-slip boundary con-
dition is prescribed. Converged solutions were obtained using the spectral/hp
element method [16]. The domain is discretized into 412 triangular elements
while 7th-order Jacobi polynomial basis are used to obtain resolution indepen-
dent solutions. Forty (N = 40) and fifty (N = 50) snapshots of solutions are
obtained from the DNS for Re=100 and Re=500, respectively, corresponding
to one full vortex-shedding period Ts. (For Re=100 we obtained Ts = 5.99
while for Re=500 we obtained Ts = 4.54 in convective time units.) Points in
the domain are then randomly dropped from the data set to produce gaps in
the data with 10%, 25% and 50% missing data in each snapshot.

Γ3

Γ1

Γ4

Γ2

Γ5

8.5D

8.5D

14.5D 24.5D

Fig. 1. Computational domain for flow past a circular cylinder.

Subsequently, we consider three-dimensional flow past a circular cylinder at
Reynolds number, Re = 185 and 10, 000. The former corresponds to a periodic
limit cycle (laminar flow with vortex shedding period Ts = 5.5 in convective
time units) whereas the latter to a turbulent wake so we deal with “rough”
data. A discretization similar to the two-dimensional cases is used here but
with Fourier expansions employed along the spanwise location. In an effort
to assess the spanwise convergence and its possible effect on the gappy data
reconstruction procedures, we performed systematic refinement studies along
the spanwise direction with Z = 4, 8 and Z = 16 Fourier collocation points
along the span. In these simulations, the length of the cylinder span was kept
constant at LZ

D
= 4, where D is the diameter of the cylinder, and the Reynolds

number was kept constant at Re = 185 (based on the cylinder diameter). We
refer to [17] for more information for the Re = 185 case and to [18] for the
Re = 10, 000; in the latter case a much higher resolution (about 15 million
grid points) and systematic refinement studies were performed.

In order to generate the gappy flow field, we discard randomly the values of the
solution on some nodes in every snapshot. In order to quantify the gappiness in
a flow field, we define the “gappiness percentage” as the number of nodal data
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points that are missing with respect to the total number of nodal data. Given
a gappiness percentage, due to the distribution of the spectral elements, we
actually discard much more data near the cylinder. Specifically, we consider
flows fields with 25%, 50% and 75% gappy data. Due to random discarding
process, these gappiness percentages vary slightly for each snapshot but are
very close to the assigned values.

The gappy data set we employed were obtained from a fully three-dimensional
spatio-temporal random distribution. In addition, in order to assess the effect
of the spatial gappiness distribution, we have also considered “quasi three-
dimensional” gappiness, that is, we keep the same gappiness distribution for
all planes in the spanwise direction. Numerical results revealed that the quasi
three-dimensional gappiness did not affect the reconstruction procedure in any
significant way. Here we will not report such results separately.

4 Results

4.1 Two-Dimensional Gappy Fields

We will first present a comparison of results between the two versions of the
POD-based reconstruction procedure (POD-1 and POD-2) for smooth and
noisy gappy flow fields, and subsequently we will present results based on the
Kriging interpolation. We separate these comparisons into two main categories
corresponding to availability of data with high temporal resolution and with
low temporal resolution. As we will demonstrate, temporal resolution is crucial
in deciding which method is more effective in recovering complete fields.

4.1.1 Convergence

Given the similarity of the two versions of POD reconstruction we first com-
pare their corresponding convergence rates for smooth and noisy data. For the
cases we study here, since we know completely the original velocity field, we
monitor the time-averaged relative error. In general, when we do not know
the real field, we can adopt a cross-validation approach by taking out 1− 3%
of known data and treating them like missing data. In figure 2 we plot the
time-averaged error defined by

√√√√
M∑

i=1

1

M

∫
Ω(ui − ûi)2dΩ∫

Ω u
2
i dΩ
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versus the number of modes M employed in the reconstruction. This error de-
creases monotonically if the iterative procedure is applied, see figure 2 (right);
however, without the iterative procedure presented in section 2 the error de-
creases initially but then diverges as the number of modes M employed in the
reconstruction exceeds a certain value, see figure 2 (left). From the comparison
of the results in figure 2, we see that the convergence of the POD-1 method
is very close to the convergence of POD-2, however the latter is a much more
efficient method. The results in the plot are for Re = 500 but similar results
hold for Re = 100 not shown here. We note, however, that the non-monotonic
decrease of the error is problem-dependent; for example, for some noisy data
sets both POD-1 and POD-2 diverge above a certain number of modes em-
ployed in the reconstruction. This is demonstrated in figure 3, where we have
superimposed Gaussian noise to the previous gappy data in the form:

Y 7→ Y + α randn(0,1),

where here we used α = 0.15. We also note that in the presence of noise,
POD-1, which involves solution of a least-square system, is more accurate
than POD-2.
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Fig. 2. Time-averaged error versus number of reconstruction modes of POD method
for Re = 500 with 50% gappiness and no iterations (left) and that of POD-1 and
POD-2 methods for Re = 500 with 50% gappiness (right).

4.1.2 High temporal resolution

Let us assume that we have available many snapshots of the flow field, e.g.
N = 50 for Re = 500. We will compare the two POD versions against the
results obtained with Kriging interpolation. In particular, since the domain is
decomposed into non-uniform triangular elements with variable grid-spacing,
we map each triangular element onto square elements with equal grid-spacing
and then we apply the Kriging interpolation.
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Fig. 3. Time-averaged error versus number of reconstruction modes of POD-1 and
POD-2 methods for Re = 500 with 90% gappiness in the noisy data with α = 0.15.
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Fig. 4. Comparison of energy distribution of POD modes of the recovered data for
Re = 500 with 50% gappiness.

We first compare the energy distribution corresponding to the different recon-
structed fields, i.e., the normalized eigenvalues of the “reconstructed” POD
modes. A typical result is shown in figure 4 for Re = 500 and 50% gappiness
percentage. We see that the eigenspectra of POD-1 and POD-2 are in good
agreement with the eigenspectrum of the complete original field up to mode
M0 = 15 whereas the Kriging interpolation produces an eigenspectrum accu-
rate up to M0 = 10. We have also included in the plot an additional result
(denoted as “POD” in the legend) corresponding to POD-2 but without any
iterations. It shows poor agreement with the complete data eigenspectrum,
thus indicating the importance of applying the POD procedures iteratively up
to full convergence.

Eigenspectra alone cannot give a complete picture of the accuracy of the re-
construction, so we examine next the spatial POD modes obtained from the
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Fig. 5. High temporal resolution: Comparison of the 5th POD mode at Re = 500
with 50% gappiness. From top to bottom: POD-1, Kriging interpolation and DNS
field. Left: Streamwise velocity. Right: Crossflow velocity.

reconstructed fields. It was demonstrated in [6] that achieving an accurate
(temporal) eigenspectrum does not necessarily imply accurate reconstruction
of the spatial modes, especially for large gappiness. For the most energetic
modes, there is good agreement between all three reconstruction approaches
(POD-1, POD-2, Kriging) with the original complete data, as shown in figure
5 for the fifth mode. Here we do not show separately the POD-2 results as
they have no visible differences with the POD-1 results. Note that the Kriging
results are somewhat noisy compared to the original data unlike the POD
results. Next, we plot results for a typical high mode (mode 18th) in figure 6.
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Fig. 6. High temporal resolution: Comparison of the 18th POD mode at Re = 500
with 50% gappiness. From top to bottom: POD-1, Kriging interpolation and DNS
field. Left: Streamwise velocity. Right: Crossflow velocity.

Unlike the low modes, here Kriging interpolation gives erroneous results, as
the actual POD mode has opposite symmetries compared to what is obtained
with Kriging interpolation. However, the POD-based algorithms produce cor-
rect results compared to the POD modes obtained from the whole DNS field.
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Fig. 7. Low temporal resolution: Comparison of eigenspectra of the recovered data
for 50% gappiness at Re = 500. Top: N = 10 snapshots. Bottom: N = 25 snapshots.

4.1.3 Low temporal resolution

Temporal resolution affects greatly the accuracy of the POD based reconstruc-
tion procedures. We study here the case in which we assume that we do not
have sufficient temporal resolution. This case is studied for the same gappy
data sets but now we drop some of the snapshots so that there are only N = 10
or N = 20 equally spaced snapshots per vortex shedding period for Re = 100
and N = 10 or N = 25 snapshots per vortex shedding period for Re = 500.
Here we present results for the higher Reynolds number in figure 7. Unlike
the high temporal resolution case, both POD-1 and POD-2 perform poorly
compared to the Kriging interpolation. We note that in the case of Re = 500
with 10 snapshots, the eigenspectrum of the two POD versions matches the
actual spectrum only up to M0 = 3 modes whereas that obtained using the
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Kriging method is accurate up to M0 = 7 modes. We have also included in
the plot the eigenspectra of the complete fields corresponding to the entire
set of snapshots in order to indicate that there is almost a total overlap of
the corresponding eigenspectra. Finally, in figure 8 we plot contours of the
fifth spatial mode confirming that indeed Kriging is more effective for flow
data corresponding to low temporal resolution. We do not present any higher
modes here as they are very noisy.
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4.1.4 Kriging for black zones

x

y

0.5 1 1.5 2 2.5 3 3.5

-1.5

-1

-0.5

0

0.5

1

1.5

x

y

0.5 1 1.5 2 2.5 3 3.5

-1.5

-1

-0.5

0

0.5

1

1.5

x

y

1.5 2 2.5

-0 .5

0

0.5

u

0.28258 7

0.2 ���������
0.22607

0.1 �	�
�����
0.16955 2

0.1 ������
�
0.113035

0.08477 61

0.0 �����������
0.0 �����������

x

y

1.5 2 2.5

-0 .5

0

0.5

v

0.1 �
�������
0.11183

0.0 ���
���
�	�
0.0 �������
�
0.07455 34

0.06212 79

0.0 �����
�����
0.03727 67

0.0 �
���������
0.0124256

Fig. 9. Top: Kriging results for a black zone 1.5D downstream from the cylinder.
Left: Original field. Right: Kriging reconstruction. Bottom: Error due to Kriging.
Left: Error in streamwise velocity. Right: error in crossflow velocity. (The freestream
velocity is U∞ = 1).

The POD-based reconstruction procedures cannot recover any data for the
black zones, i.e. regions in the domain for which we have missing data at all

times. However, Kriging interpolation can fill in these black zones, so here we
evaluate its effectiveness. To this end, we will employ again the 2D simulation
data in flow past a cylinder. Results with available experimental data based
on particle-image-velocimetry (PIV) were obtained in [12] for a more complex
flow and similar conclusions as the ones presented next were drawn.

First, we consider uniform flow past a circular cylinder, as above, and we re-
move from the domain some regions. The first removed region is a square area
of widthD. It is located at 1.5D downstream from the cylinder. The second re-
moved region is a square area with 2D width located at 10.5D downstream of
the cylinder. We have removed the same area for all 40 snapshots and 50 snap-
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Left: Original field. Right: Kriging reconstruction. Bottom: Error due to Kriging.
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velocity is U∞ = 1).

shots for Re = 100 and Re = 500. The Kriging interpolation now is performed
separately on two bigger square domains containing the aforementioned black
zones with width of 2D and 4D.

The results at Re = 500 lead to same conclusion as the results from Re = 100,
so here we present results from Re = 100. We plot the streamlines of the first
snapshot of the data from Re = 100 in figure 9. Shown here is the case where
the black zone is at 1.5D downstream (the dashed box represents the black
zone.) We see that the results obtained from the Kriging interpolation seem
to be in reasonable agreement with the real field. We can quantify the error
by plotting in figure 11 (left) the streamwise velocity profile at x = 2, which is
a location right through the middle of the black zone; the error is noticeable
but small.

Next, we examine the case for which the black zone is at 10.5D downstream
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Fig. 11. Streamwise velocity profile at x = 2 (left) and x = 12 (right) for Re = 100
for black zones located at 1.5D and 10.5D, respectively, downstream from the cylin-
der.

from the cylinder, see figure 10. The results from this figure in conjunction with
the velocity profile plotted in figure 11 (right) demonstrate that the prediction
of the Kriging interpolation is more accurate in this case. This should be
expected as the first black zone is in the region of absolute instability, which
effectively defines the von Karman street behind the cylinder, see [19].

4.2 Three-Dimensional Gappy Fields

In the first subsection we continue the comparison between POD-based recon-
struction and Kriging interpolation for three-dimensional flow. In the second
subsection we investigate how the accuracy of Kriging interpolation is affected
by the correlation kernel we select; we do this for the turbulent wake. Due to
excessive memory requirements in the POD-based reconstruction we could not
process the data with our serial reconstruction code for the turbulent field, so
a comparison in this case was not possible. Kriging, on the other hand, works
on one field at at time.

4.2.1 Periodic limit cycle

At Reynolds number Re = 185 the flow past a cylinder bifurcates to a stable
three-dimensional time-periodic state [20]. We want to investigate the perfor-
mance of the aforementioned reconstruction techniques for gappy data sets
of this three-dimensional flow. We have shown in the previous section that
at least for the cylinder flow the two POD-based reconstruction procedures
perform similarly, so here we present comparisons of POD-1 against Kriging
interpolation.
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In order to investigate the accuracy of each reconstruction procedure in detail
we employ the standard root-mean-square error (rms) for each snapshot as
follows:

rmsM(u) =

√√√√ 1

NT

NT∑

i=1

[uM
c (x, y, z)− u(x, y, z)]2 (10)

where NT is the total number of grid points in the flow field, u
M
c denotes the
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reconstructed streamwise velocity component via M modes, while u(x, y, z)
denotes the “true” velocity component obtained from the DNS before the
random data-discarding process. The rms error for the crossflow and spanwise
velocity components are defined similarly.

Figure 12 shows the root-mean-square error of the reconstructed velocity com-
ponents as a function of mode number employed in the POD-1 method and
the Kriging method. The gappy field considered corresponds to 25% gappi-
ness percentage. The POD-1 method exhibits monotonic convergence as the
number of modes is increased. The Kriging procedure is independent of the
number of snapshots since it is employed for each snapshot individually. We
have also included (with symbols) the original (non-iterative) POD-1 proce-
dure of Everson & Sirovich, which converges initially but diverges above a
certain number of modes. This is a typical behavior we have observed for the
two-dimensional flow as well, see also [6]. We also observe here that the rela-
tive performance of POD-1 against Kriging depends strongly on the temporal
resolution, i.e., the number of available snapshots. Specifically, by increasing
the number of snapshots from N = 40 to N = 80, the error for POD-1 drops
more than one order of magnitude. We also note that while there is almost no
difference in the (overlapping) POD spectrum of full (non-gappy) flow field
between 40 and 80 snapshots, it is crucial to employ a sufficient number of
snapshots for an accurate reconstruction of the gappy data.

We now examine how the performance of the two reconstruction methods
changes as the gappiness increases. Figure 13 shows the root-mean-square er-
ror of the reconstructed velocity components as a function of mode number
for 50% and 75% gappiness. Comparing these results with the results of figure
12 suggests that for increased gappiness levels (up to 75%, possibly more),
Kriging outperforms the POD-based approach. The convergence of POD-1 as
a function of the number of modes employed in the reconstruction is rather
complex: While for the low gappiness percentage (figure 12) , all modes, in-
cluding higher modes, contribute to reducing the error, for larger gappiness
(50% and 75%), higher order modes do not actually contribute to reducing
the error. This can be attributed to the unresolved higher (spatial) modes due
to the insufficient number of snapshots for larger gappiness percentage. Since
each snapshot provides some extra information of the dynamics of the flow,
by increasing the number of snapshots beyond N = 80 for 75% gappiness, it
may be possible to further improve the accuracy of the POD-1 method.

Figure 14 shows a comparison of eigenspectra obtained using the POD-1
method and the Kriging procedure. Note that the eigenspectrum obtained
by the Kriging procedure does not depend on the number of modes while for
the POD-1 method the eigenspectrum (like the rms error) is a function of the
number of modes, and can be improved significantly by increasing the num-
ber of modes for reconstruction. Figure 14 shows that for all three gappiness
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Fig. 13. Root-mean-square error of the reconstructed velocity components as a func-
tion of mode number (N = 80). For legend see caption of figure 12. Top: 50%
gappiness. Bottom: 75% gappiness.

percentages considered, more temporal modes are resolved using the POD-1
procedure. Specifically, there are apparent large deviations for the Kriging
method for higher modes as seen in figure 14. In other words, it appears that
the POD-1 procedure follows the “true” spectrum more closely. However, this
is true for the low gappiness percentage only. Upon closer inspection of the
results for the 75% gappiness, we see in figure 15 that there are considerable
deviations in the most energetic temporal modes obtained using the POD-1
method whereas Kriging follows the most important part of the “true” spec-
trum, i.e. the low more energetic modes, more accurately.

Table 1 shows the relative error of the first three temporal modes for differ-
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Fig. 14. Comparison of eigenspectra for different number of modes. On the right a
close-up view with more number of modes is presented. From top to bottom 25%
gappiness, 50% gappiness and 75% gappiness.

ent gappiness percentages. At 75% gappiness percentage, the Kriging method
captures the first three temporal modes better than the POD-1 procedure by
about an order of magnitude whereas for lower gappiness the POD-1 method
is more accurate. Overall, the errors in eigenspectra are consistent with the
rms errors we presented in earlier plots.
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M 25% 50% 75%

POD-1 Kriging POD-1 Kriging POD-1 Kriging

procedure procedure procedure

1 0 1.0x10−5 2.2x10−4 2.7x10−4 3.69x10−2 3.74x10−3

2 0 0.0 0 2.5x10−2 2.3 0.4

3 0 1.0x10−5 1.4x10−2 3.7x10−2 4 0.4

Table 1
Relative error of the first three temporal modes (eigenvalues) compared to the “true”
eigenvalues.

We now turn our attention to the quality of the reconstructed velocity fields.
For the smallest gappiness we considered, i.e. 25%, all POD modes up to the
twenty-first mode are resolved accurately by both methods. For higher order
modes, e.g., the thirty-first mode, there is a large difference between the two
methods with POD-1 much more accurate than Kriging. Despite the inaccu-
racy in the higher modes, the reconstructed flow fields are visually identical.

We now examine the reconstructed fields at gappiness 50% for which the POD-
1 eigenspectrum is slightly more accurate than that of Kriging interpolation.
Contours of all three velocity components are plotted in figure 16 at a fixed
z-plane perpendicular to the cylinder axis. In addition to the reconstructed
fields, we also present the 50% gappy data and the (non-gappy) DNS data, for
comparison. The left column represents the streamwise component, the middle
column represents the cross flow component and the right column represents
the spanwise component of the flow. The POD-based approach results in a
slightly better reconstruction than the Kriging procedure. For example, the
spanwise velocity component error of the Kriging procedure is twice as big
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as the POD-1 procedure (0.003054 versus 0.001553) and this leads to visibly
“noisy” contours of spanwise velocity component depicted in figure 16 obtained
using the Kriging procedure. Figures 17 and 18 show spanwise variation of the
reconstructed crossflow and spanwise velocity fields, respectively. In general,
both methods perform very well in capturing spanwise distributions, even
though some slight deviations from the “true” field are noticeable for the
Kriging procedure under closer examination, consistent with the respective
error values.
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Fig. 16. Reconstruction of 50% gappy data via the POD-1 and Kriging methods.
From top to bottom, gappy data field, POD-1, Kriging, and original DNS data. The
instantaneous ninth snapshot at z = 1 plane is shown. Left: streamwise; Middle:
crossflow, and Right: spanwise components.

Finally, we present the reconstructed fields for very large gappiness, namely
75%. Unlike the 25% and 50% gappy data we presented previously, for the
75% gappy data set, none of the modes obtained by the POD-1 are resolved
accurately; they all contain noise, which increases drastically with increasing
mode number. On the other hand, the lower most energetic modes (e.g., up
to tenth mode) extracted by Kriging are resolved accurately. The effect of
unresolved modes (both temporal and spatial) is evident on the reconstructed
flow field by the POD-1, as shown in figure 19, where the crossflow velocity
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Fig. 17. Reconstruction of the crossflow velocity component for 50% gappy data.
From top to bottom, gappy data field, POD-1, Kriging, and original DNS data. Left
column: y= 0 plane, right column: y = 0.5 plane. (ninth snapshot)

component is plotted.

4.3 Kriging: Choice of Correlation Function

We have demonstrated so far that the Kriging procedure is quite effective for
laminar flows for which the velocity fields are very smooth. In this section
we consider turbulent flow fields obtained in simulations described in [18] for
flow past a cylinder at Reynolds number Re = 10, 000. A mesh consisting
of 9272 triangular elements was employed with Jacobi polynomial basis of of
fifth order, while 64 Fourier planes were employed along the span. The Kriging
procedure is applied in each element in order to recover the missing data. Here,
we compare two types of kernels corresponding to different smoothness at the
origin:

(1) The Gaussian kernel, which is the kernel we have used in all cases so far
at lower Reynolds number, and

(2) The exponential kernel which is non-smooth at the origin.
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Fig. 18. Reconstruction of the spanwise velocity component for 50% gappy data.
From top to bottom, gappy data field, POD-1, Kriging, and original DNS data.
Left column: y = 0 plane, right column: y = 0.5 plane. (ninth snapshot)

A summary of our findings is presented in table 2. Reconstruction of the
streamwise velocity exhibits the largest errors. For low gappiness (25%), the
Gaussian kernel is clearly more effective than the exponential kernel. However,
for the higher gappiness cases, the two kernels are equally effective as the errors
in the reconstruction are about the same.

5 Summary

We have presented three different algorithms in reconstructing gappy velocity
fields for unsteady flows. The first two algorithms are based on proper or-
thogonal decomposition (POD) and require the entire set of snapshots. They
are different in the way the unknown temporal modes are computed: Algo-
rithm POD-1 involves the solution of a least-squares system whereas algorithm
POD-2 is less rigorous. The third method is based on Kriging interpolation, it
is local, and it is applied to each snapshot separately. In the current study we
have created artificially gappy data sets obtained from direct numerical simu-
lations of flow past a circular cylinder in two- and three-dimensions. We have
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Fig. 19. Reconstruction of the cross flow velocity component for 75% gappy data.
From top to bottom, gappy data field, POD-1, Kriging and original DNS data. Left
column: y = 0 plane, right column: y = 0.5 plane. (ninth snapshot)

also worked with experimental data obtained using particle image velocimetry
(PIV) and similar results, as in the current study, were obtained, see [12]. We
summarize here the main findings from our study:

• Kriging interpolation is an effective way of recovering missing data in un-
steady flows even in sensitive regions, e.g. regions of absolute instability.

• For high temporal resolution (i.e., many snapshots), POD-based reconstruc-
tion is more accurate than Kriging interpolation; however, for low temporal
resolution Kriging is more effective.

• For small gappiness in the flow field, POD-based reconstruction is more ac-
curate than Kriging; however, for large gappiness Kriging is more accurate.

• The two versions of POD-based reconstruction exhibit the same accuracy for
modest levels of gappiness, but POD-2 is much more efficient than POD-1.
However, for large gappiness and noisy gappy data POD-1 is more accurate.

• In Kriging interpolation, the Gaussian correlation kernel is more effective
than the exponential kernel but for large gappiness similar results are ob-
tained.
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Kernels Rms(u)

25% 50% 75%

Gaussian type 0.00688 0.01655 0.03043

Exponential type 0.00924 0.01799 0.03120

Kernels Rms(v)

25% 50% 75%

Gaussian type 0.00672 0.01614 0.02964

Exponential type 0.00905 0.01756 0.03042

Kernels Rms(w)

25% 50% 75%

Gaussian type 0.00566 0.01458 0.02886

Exponential type 0.00801 0.01637 0.02992

Table 2
Error (rms) in velocity components using two different Kriging kernels for a turbu-
lent field.

The flow we have examined exhibits low-dimensionality and therefore the re-
construction methods are effective even for large gappiness, e.g. 75%. We have
also worked with relatively smooth data, whereas, in general, noise may be
present in the gappy data sets. In future work, it will be of interest to apply
the techniques presented here to other flows, e.g. to wall-bounded turbulence,
in order to gain more experience with data recovery techniques for such fluid
mechanics problems.
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